References

Akiyama T. and Iguno T., 1981, A model tank test using artificial ground freezing. 395
Andersland O. B., Wiggert D. C. and Davies S. H., 1996, Hydraulic conductivity of
frozen granular soils. J. Environmental Engineering, 212-216
Anderson D. M. and Tice A. R., 1972, Predicting unfrozen water contents in frozen soils
from surface area measurements. Highway Research Record 393, 12-18
porous media towards an ice front. Journal of Hydrology 37, 137-148
Black P. B. and Miller R. D., 1990, Hydraulic conductivity and unfrozen water content
of air-free frozen silt. Water Resources Research 26, 323-329
Black P. B., 1995, Application of the clapeyron equation to water and ice in porous
media. CRREL Report 95-6,
Carr M. H. and Schaber G. G., 1977, Martian permafrost features. J. Geophysical
Research 82, 4039-4054
Chamberlain E. J, 1981, Frost susceptibility of soil and review of index tests. CRREL
Monograph 81-2, 110
conductivity on its capture by a crystal growing form a melt. Soviet Phys.
Crystallogr 22, 656-658
Colbeck S. C., 1982, Configuration of ice in frozen media. Soil Science 133, 116-123
Colbeck S. C., 1985, A technique for observing freezing fronts. Soil Science 139, 13-20
Conte J. L., 1850, Observation on a remarkable exudation of ice from the dtems of
vegetables, and on a singular protrusion of icy columns from certain kinds of
Earth during frosty weather. Philosophical Magazine 36, 329
Dash J. G., Fu H. and Wettlaufer J. S., 1995, The premeliting of ice and its
environmental consequences. Rep. Prog. Phys. 58, 115
Dash J. G., 1989, Thermomolecular pressure in surface melting: Motivation for frost
heave. Science 246, 1591
Derjaguin B. V. and Churaev N. V, 1986, Cold Regions Science and Technology 12, 57
Everett D. H., 1961, Thermodynamics of damage to porous solids. Transactions,
Faraday Society 57, 1541-1551
Faraday M., 1859, On regelation, and on the conservation of force. Philosophical
Magazine 17, 162-169
Feldman W. C., Maurice S., Binder A. B., Barraclough B. L., Elphic R. C. and
Lawrence D. J., 1998, Fluxes of fast and epithermal neutrons from Lunar
Prospector: Evidence for water ice at the Lunar Poles, Science 281, 1496-1500


Furukawa Y., 1992, Surface and interface microstructure of ice and its relation to crystal growth. (in Japanese), Ouyou Buturi 61, 776-787


Hopke S. W., 1980, A model for frost heave including overburden. Cold Regions Science and Technology 3, 177-183


Horiguchi K. and Miller R. D., 1980, Experimental studies with frozen soil in an ice sandwich permeameter. Cold Regions Science and Technology 3, 177-183
Ishizaki T., 1995, Experimental study on unfrozen water migration in porous materials during freezing. J. Natural Disaster Science 17, 65-74
Jackson K. A. and Uhlmann D. R., 1966, Particle sorting and stone migration due to frost heave. Science 152, 545-546
Kane D. L., 1997, The impact of hydrologic perturbations on Arctic ecosystems induces by climate change. Walter C. et al. (ed.), Global Change and Arctic Terrestrial ecosystems, 63-81
Kinosita S., 1984, Yukino hanashi Kourino hanashi (in Japanese), Maruzen, Tokyo, 170
Kumai M., 1979, Electron microscope investigations of frozen and unfrozen bentonite. CRREL Report 79-28,
Kuroda T., 1985, Theoretical study of frost heaving - kinetic process at water layer between ice lens and soil particles. Ground Freezing 85, 39-45
Mackay J. R., 1993, Air temperature, snow cover, creep of frozen ground, and the time of ice-wedge cracking, western Arctic coast. Canadian J. Earth Sci. 30, 1720-1729
Miller R. D., 1972, Freezing and heaving of saturated and unsaturated soils. Highway Research Record 393, 1-11

Mizoguchi M., 1993, A derivation of matric potential in frozen soil. The Bulletin of the Faculty of Bioresources, Mie University 10, 175-182

Mohamed A. M. O., Yong R. N. and Mazus M. T., 1995, Contaminant migration in engineered clay barriers due to heat and moisture redistribution under freezing conditions, Canadian Geotechnical J. 32, 40-59


Nakaya U., 1942, Toujyou kikou ni tuite I (in Japanese), Kisyou Syushi 2, 313


O'Neill K. and Miller R. D., 1982, Numerical solutions for a rigid-ice model of secondary frost heave. CRREL Report 82-13,


Padilla F. and Villeneuve J. P., 1992, Modeling and experimental studies of frost heave including solute effects. Cold Regions Science and Technology 20, 183-194


Sill R. C. and Skapski A. S., 1956, Method for the determination of the surface tension of solids, from their melting points in thin wedges. J. Chem. Physics 24, 644-651
Sone T. and Strelin J., 1997, Periglacial landforms in James Ross island, the Antarctic Peninsula, 17th Symp. Antarctic Geosciences program and abstracts, 47-49
Taber S., 1929, Frost heaving. J. Geology 37, 428-461
Taber S., 1930, The mechanics of frost heaving. J. Geology 38, 303-317
Takagi S., 1980, The adsorption force theory of frost heaving. Cold Regions Science and Technology 1, 57-81
Takeda K., 1988, Experimental study on ice segregation during soil freezing. Ph. D. Thesis, Hokkaido University, Sapporo,
Thyholt K. and Isaksson T., 1997, Differentiation of frozen and unfrozen beef using near-infrared spectroscopy. J. Science Food Agric. 73, 525-532
Tice A. R., Oliphant J. L., Nakano Y. and Jenkins T. F., 1982, Relationship between the ice and unfrozen water phases in frozen soil as determined by pulsed nuclear magnetic resonance and physical desorption data. CRREL Report 82, 8
Topp G. C. and Davis J. L., 1985, TDR and its application to irrigation scheduling. Advances in Irrigation, 107-127
Tsuchiya F., 1986, Tokati tihou ni okeru kazanbai dojyou no touketu, toujyou ga nouti ni oyobusu eikyouni kannsuru kennkyu (in Japanese), 166


