基礎力専門力の個別学習教育目標

(H18.3.29)

I. 基礎力

A. 倫理(倫理的責任と職業的責任に対する認識を持つ)

No.	目標	対応科目
1.	安全性、危機管理、モラルや自己コントロールなどか	共生環境技術者倫理学
	らなる技術者倫理、および地球環境や自然保護に関す	情報応用システム工学
	る環境倫理について説明できる.	(応用シミュレーション工学)
2.	技術者倫理や環境倫理に関する基礎的な知識を身に	共生環境技術者倫理学
	つけ,広い視野をもつ技術者として現実の問題解決に	
	対応できる.	
3.	資料の引用方法,著作権,セキュリティーといった情	環境系情報リテラシ
	報倫理を意識できる.	(環境系情報リテラシ I)
		(環境系情報リテラシ II)
4.	実験や実習を通して報告・連絡・相談の重要性を認識	環境情報システム工学実習I
	し、安全に作業が行えるように配慮する基本姿勢を身	環境情報システム工学実習 II
	に付ける.	環境情報システム工学実験
		農業生産実習

B. 諸問題の認識とグローバルな視点

No.	目標	対応科目
1.	地球規模の環境問題に関する基礎知識を持ち合わせ、	共生環境技術者倫理学
	概要を説明できる.	エネルギー利用学
2.	関連する専門分野の諸問題について、その背景を踏ま	グローバル・コミュニケーション
	えながら、客観的に検討することができる.	卒業研究
3.	問題を解決する方策が、社会や環境に影響を及ぼす可	共生環境技術者倫理学
	能性があることを認識している	環境系システム制御学
		(環境情報システム制御学)
4.	様々な現場や領域に飛び込み、経験することにより、	実地見学
	自分の価値観に束縛されず、複数の視点から物事を冷	農業生産実習
	静に判断できる	インターンシップ
		卒業研究
5.	設定された問題を複数の視点から検討するために、国	環境情報学
	内外を問わずインターネットを使って情報を検索し、	環境系情報リテラシ
	問題の本質を認識しようとする姿勢が身に付いてい	(環境系情報リテラシ I)
	る.	(環境系情報リテラシ II)

C. チーム活動

No.	目標	対応科目
1.	メンバー相互のコミュニケーションや自発的行動が	フィールドサイエンス概論・実習
	重要であることを認識し、チーム活動を行う上での基	卒業研究
	本姿勢を身に付ける.	
2.	提起されている問題をチーム内で分析し、合意形成を	フィールドサイエンス概論・実習
	はかり、最善の解決方法を見出せる.	卒業研究
3.	チームワークを重視し、共同で行動できる.	フィールドサイエンス概論・実習
		卒業研究
4.	提出期限や集合時間あるいは段取りといった時間管	卒業研究
	理が最低限行えるとともに、教員から求められる最低	環境情報システム工学実験
	限の質をもつ結果を残すことができる. 基本的なコン	環境情報システム工学実習I
	ピテンシ能力を身に付ける.	環境情報システム工学実習 II

D. コミュニケーション

	□ [#	니소신트
No.	目標	対応科目
1.	読み手や聞き手の要求に見合った情報を構成および	環境情報学
	設計することを意識し、数値、図表を用いてわかりや	環境系情報リテラシ
	すく説明する基本姿勢を身に付ける.	(環境系情報リテラシ I)
		(環境系情報リテラシ II)
2.	漢字や句読点,文法に注意を払いながら,指定された	全科目共通
	段落構成, 図表や文献の挿入および引用規則を守って	環境情報システム工学実験
	文章を作成できる.	卒業研究
3.	ノートならびにペンを用意するなど、常に聞く姿勢あ	環境系情報リテラシ
	るいは質問する姿勢をとることができる.	(環境系情報リテラシ I)
		(環境系情報リテラシ II)
		環境情報システム工学実験
		環境情報システム工学実習I
		環境情報システム工学実習 II
4.	論理的な記述力、口頭発表力、討議などのコミュニケ	卒業研究
	ーション能力を身につけ、論文や講演により研究成果	
	などを適切に伝えることができる。	
5.	国際的に通用するコミュニケーション基礎能力を身	グローバル・コミュニケーション
	につけている。	
6.	インターネット上のエチケットやマナーを意識しな	環境情報学
	がら情報をやりとりできる.	環境系情報リテラシ
		(環境系情報リテラシ I)
		(環境系情報リテラシ II)
7.	専門分野において,外国語を用いてコミュニケーショ	グローバル・コミュニケーション
	ンができる.	

E. 基礎学力

No.	目標	対応科目
1.	システム工学に関連する設計時に遭遇する力学上の	環境系力学基礎 I
	諸問題に対して、力学の各原理と各法則のうち問題	環境系力学基礎Ⅱ
	解決に最も適切なものを選択し、簡潔な数学操作に	(環境系数学基礎)
	より解答を得ることができる.	(環境系力学基礎)
2.	1階微分方程式(変数分離形,同次形,1階線形,ベ	環境系数学基礎
	ルヌーイ, 完全微分形), 2 階線形微分方程式 (斉次	環境系応用数学 I
	形、非斉次形、演算子法、ラプラス変換、級数解)	環境系応用数学Ⅱ
	について習熟し、実用的な問題に対応できる.	(応用環境数学 I)
		(応用環境数学 II)
3.	エネルギーとエントロピー,この2つの熱力学の基	生物環境熱工学
	本概念を理解し、熱力学諸量の関係式の導出方法を	
	身につける.	
4.	危険物に関する法令、危険物の物理化学、危険物の	安全環境工学
	性質と火災予防、消火の方法を身につける.	
5.	流体の性質、流体圧、層流と乱流、ベルヌーイの定	水理学
	理、トリチェリの定理、管路内の流れ、水路の流れ、	(流体の運動学)
	流量測定、流れが物体におよぼす作用などについて、	
	基礎的な問題が解答できる.	## ## ## ## ## ## ## ## ## ## ## ## ##
6.	電気と磁気の基本的性質、電気・電子素子の働きや	環境系電気・電子工学
	それらの組合せによる回路を理解して、説明できる。	(生物系電気・電子工学)
7.	現在のエネルギー問題や環境問題を理解して、それ	エネルギー利用学
/.	現在のエネルギー同題や環境同題を理解して, それ らを解決するために必要となる新エネルギーやその	(生物環境エネルギ学)
	利用技術、変換技術を説明できる。	(土物來苑一小) 十)
8.	システムとして成立っているロボットの基本要素を	基礎メカトロニクス
0.	理解すると共に、特に関節を適切に動作させるため	(基礎ロボティクス)
	の構造設計と制御系の設計概念を説明できる。	(ZERC VV)) VV)
9.	取得した情報を解析し、視覚表現でき、解説できる。	環境情報学
10.	環境・情報・システム工学に関連する専門用語を説	環境系システム制御学
	明できる.	(環境情報システム制御学)
11.	環境・情報・システム工学に関連する数学モデルを	基礎物理学 I
	説明できる.	環境系システム制御学
		(環境情報システム制御学)
12.	プログラミングやアルゴリズムに関する情報処理技	プログラミング基礎
	術をもっている.	(応用情報処理)

No.	目標	対応科目
13.	基本的統計処理や回帰分析手法を理解し、これらの	環境解析基礎
	手法による具体的計算を行うことができる.	
14.	数値補間法や数値微分・積分法をはじめ、常微分方	環境系数値処理
	程式の初期値問題の数値解法、各種方程式の数値解	
	法について理解し、これらの手法による具体的計算	
	を行うことができる.	
15.	ウィルスやスパイウェアに関するセキュリティー問	環境情報学
	題を認識し、パソコンの脆弱性を改善することがで	環境系情報リテラシI
	きる.	環境系情報リテラシ II
16.	Word, Excel, PowerPoint を使用し、与えられた課題	環境情報学
	に対して教員から指示された書式を持つ資料を作成	環境系情報リテラシ
	できる.	(環境系情報リテラシ I)
		(環境系情報リテラシ II)
17.	実験レポートやゼミ資料、卒業論文といった報告書	環境系情報リテラシ
	を作成するために最低限必要な作文技術を身につけ	(環境系情報リテラシ I)
	ている.	(環境系情報リテラシ II)
		卒業研究
		環境情報システム工学実験
		環境情報システム工学実習I
		環境情報システム工学実習 II

II. 専門力

A. 問題解決能力 (数学的, 科学的, 職業技術的な行動に必要となるスキルや知識を応用できる)

No.	目標	対応科目
1.	関連する専門分野の諸問題について、その背景を踏ま	卒業研究
1.		, ,,,,,,,
	えながら、客観的に検討することができる.	フィールドサイエンス実習
		環境情報学
		環境情報システム工学実習
		インターンシップ
		農業生産実習
		食糧生産システム学
2.	様々な方法を駆使して、目標値との誤差や誤りの発生	フィールドサイエンス実習
	原因を特定することができる.	卒業研究
3.	所定の期間内に問題を解決できる,あるいは解決につ	応用シミュレーション工学
	ながる回答を用意できる.	全科目共通
		卒業研究
		(情報応用システム工学)
4.	与えられた課題に対して、文献やインターネットまた	環境情報学
	は人を活用して、教員が設定した品質の結果を出すこ	環境系情報リテラシ
	とができる.	(環境系情報リテラシ I)
		(環境系情報リテラシ II)
		環境情報システム工学実験
		卒業研究

B. データ読解能力 (グラフ, 数値データ, テキストデータを読解できる)

No.	目標	対応科目
1.	教員から指導を受けた正しい方法、正しい手順でデー	環境情報システム工学実習I
	タを収集および提供できる.	環境情報システム工学実習 II
		環境情報システム工学実験
		フィールドサイエンス概論・実習
		卒業研究
2.	必要な情報を検索する能力を持ち、収集した情報を整	環境情報学
	理,要約できる.	環境系情報リテラシ
		(環境系情報リテラシ I)
		(環境系情報リテラシ II)
		環境情報システム工学実験
		フィールドサイエンス概論・実習
		卒業研究
3.	取得データを、教員が指導する適切な方法で、適切な	環境情報システム工学実習I
	形に加工することができる.	環境情報システム工学実習 II
		環境情報システム工学実験
		フィールドサイエンス概論・実習
		卒業研究

No.	目標	対応科目
4.	取り扱う数値データの単位を理解することができる.	専門基礎科目全部
	またミスなく計算することもできる.	環境情報システム工学実習I
		環境情報システム工学実習 II
		環境情報システム工学実習実験
		卒業研究
5.	取得したデータについて統計処理を行い、誤差の分析	卒業研究
	や原因究明を行える.	環境情報システム工学実験
6.	取得したデータを図表に作成し、考察を加えることに	グローバル・コミュニケーション
	より妥当な結論を導くことができる.	環境情報システム工学実験
		フィールドサイエンス概論
		フィールドサイエンス実習
		卒業研究
7.	プログラミング言語の一つであるC言語の基本を習得	プログラミング
	し、ソースコードを読解する素養を身に付ける.	

C. 実験(実験を計画し、行動に移すことができる)

No.	目標	対応科目
1.	実験で検証すべき問題および得るべき目標を明らか	卒業研究
	にし、実験計画を立てることができる.	環境情報システム工学実験
2.	問題を解決するために立てた仮説を、実験により検証	環境情報システム工学実験
	することができる.	卒業研究
3.	実験結果の再現性を確認するための繰り返し実験の	環境情報システム工学実習I
	重要性が説明できる.	環境情報システム工学実習 II
		環境情報システム工学実験
		卒業研究
		フィールドサイエンス概論・実習
4.	実験機器の動作原理を理解し、操作できる.	環境情報システム工学実験
		卒業研究
		フィールドサイエンス実習
		環境情報システム工学実習ⅠおよびⅡ
5.	現象にあわせて計測機器や計測技術を適切に選択し、	卒業研究
	データを収集することができる.	環境情報システム工学実験
		フィールドサイエンス実習

D. 問題設定能力(デザイン)

	→ I <i>=</i>	LL-L-AL E
No.	目標	対応科目
1.	機械・装置システムの基本設計法、基本要素設計法お	設計製図学 I
	よび製図法を良く理解し、CAD による機械要素および	設計製図学Ⅱ
	装置の設計製図ができる.	設計製図学演習 I
		設計製図学演習Ⅱ
		(設計製図学)
		(応用設計製図学)
2.	設計ツールや方法論を適切に使用して、詳細なレベル	設計製図学 I
	まで設計を進めることができる。	設計製図学Ⅱ
		設計製図学演習 I
		設計製図学演習Ⅱ
		(設計製図学)
		(応用設計製図学)
3.	簡単な実験装置を考案・設計・試作しデータを採取で	卒業研究
	きる.	生物環境エネルギ学
4.	解決すべき問題に対して多くの方策を用意し、方策の	卒業研究
	妥当性を評価しながら、最適なものを選び出し、基本	
	デザインができる.	
5.	与えられた条件化で,強度設計の理論を用いて梁や軸	環境系応用力学 I
	等の設計ができる.	環境系応用力学Ⅱ
		(応用力学)
		(情報応用力学)