直線上に配置


最近の原著論文 2019年以降

・Nishikawa, A., S. Karita, M. Umekawa. 2024. A pathway of N-acetylglucosamine metabolism for uridine diphosphate N-acetylglucosamine biosynthesis through Ngk1 kinase in Saccharomyces cerevisiae. FEBS Lett., online.[PubMed ID:38622055] [https://doi.org/10.1002/1873-3468.14881]
・Llantada, P. L. T., M. Umekawa, S. Karita. 2024. Unraveling the microbial tapestry: exploring bacterial microbiota profiles across the gastrointestinal tract regions in dairy buffaloes (Bubalus bubalis). Vet. Integr. Sci., 22:1029-1053.
・Llantada, P. L. T., M. Umekawa, S. Karita. 2024. Characterization of bacterial microbiota in the gastrointestinal tract (GIT) of buffaloes using PCR-based analysis. Adv. Anim. Vet. Sci., 12:479-489.
・Ito, D., K. Kitamura, K. Higashi, M. Kondo, S. Ogawa, A. Kikuchi, S. Karita, S. Ichikawa. 2024. Stable cellulolytic acitivity of Clostridium thermocellum against cellulosic biomass pretreated with ionic liquid 1-ethyl 3- methylimidazolium acetate. Bioresour. Technol. Rep., 25: 101739 (2024). [https://doi.org/10.1016/j.biteb.2023101739].
・中村昌宏、伊藤太一、苅田修一.2023. 単離・同定された天然酵母の中華まん用酵母としての特性について. 日本食品工学会誌. 24:69-75. [J-STAGE:24-23630] [https://doi.org/10.11301/jsfe.23630]
・Ito, D., S. Karita, M. Umekawa. 2023. A C1/C4-oxidizing AA10 lytic polysaccharide monooxygenase from Paenibacillus xylaniclasticus strain TW1. J. Appl. Glycosci. 70: 39-42.[PubMed ID: 37033115] [http://doi.org/10.5458/jag.jag.JAG-2022_0001]
・Umekawa, M., A. Nishikawa, N. Isono, S. Karita. 2022. Identification and biochemical characterization of a novel N-acetylglucosamine kinase in Saccharomyces cerevisiae. Sci. Rep. 12: 16991. [PubMed ID: 36216916] [https://doi.org/10.1038/s41598-022-21400-3]
・Ito, D., E. Nakano, S. Karita, M. Umekawa, K. Ratanakhanokchai, C. Tachaapaikoon. 2022. Characterization of a GH family 43 β-xylosidase having a novel carbohydrate -binding module from Paenibacillus xylaniclasticus strain TW1. J. Appl. Glycosci. 69:65-71. [PubMed ID: 36312872] [http://doi.org/10.5458/jag.jag.JAG-2022_0001]
・Chaudhary, A., A. Hussain, Q. Ahmad, T. Ahmad, Q. Minahai, S. Karita, B. Deepanraj. 2022. Watermelon peel hydrolysate production optimization and ethanologenesis employing yeast isolates. Biomass Convers. Biorefin., Published; 18 June. 2022. [https//doi.org/10.1007/s13399-022-02923-1].
・Chaudhary, A., A. Hussain, Q. Ahmad, M. Manzoor, S. A. Tahira, S. Karita. 2022. Statistical optimization of alkaline treatment of pomegranate peels waste for bioethanol production. Biomass Convers. Biorefin., Published:26 Jan. 2022[https://doi.org/10.1007/s13399-022-02345-z].
・Ichikawa, S.,D. Ito, S. Asaoka, R. Abe, N. Katsuo, T. Ito, D. Ito, S. Karita. 2022. The expression of alternative sigma-I7 factor induces the transcription of cellulosomal genes in the cellulolytic bacterium Clostridium thermocellum. Enzyme Microb. Technol., 156: 110002.[PubMed ID: 35168167] [http://doi.org/10.1016/j.enzmictec.2022.110002]
・Chaudhary, A., A. M.Akram, Q. Ahmad, Z. Hussain, S. Zahra, Q. Minahal, S.Azhar, S. Ahmad, S. Hayat, M. A. Javed, M.S. Haider, Q. Ali, S. Karita. 2021. Optimized biotransformation of acid-treated water melon peel hydrolyzate into ethanol. Brazil. J. Biol. 83: e253009.[PubMed ID: 34495170] [https://doi.org/10.1590/1519-6984.253009] accepted July8, 2021.
・Ichikawa, S., Y. Tsuge, S. Karita. 2021. Metabolome analysis of constituents in membrane vesicles for Clostridium thermocellum growth stimulation. Microorganisms, 9:593 [PubMed ID: 33805707].
・Umekawa, M., K. Hamada, N. Isono, S. Karita. 2020.The Emi2 protein of Saccharomyces cerevisiae is a hexokinase expressed under glucose limitation. J. Appl. Glycosci. 67: 103-109.[PubMed ID: 34354536]
・Umekawa, M., D. Shiraishi, M. Fuwa, K. Sawaguchi, Y. Mashima, T. Katayama, S. Karita. 2019. Mitotic cyclin Clb4 is required for the intracellular adaption to glucose starvation in Saccharomyces cerevisiae. FEBS Lett., 594: 1329-1338.[PubMed ID: 31853970]
・Ichikawa, S., S. Ogawa, A. Nishida, Y. Kobayashi, T. Kurosawa, and S. Karita. 2019. Cellulosomes localize on the surface of memebrane vesicles from the cellulolytic bacterium Clostridium thermocellum. FEMS Microbiol Lett., 366: fnz145. [PubMed ID: 31260052]
・Ichikawa,S., M. Ichihara, T. Ito, K. Isozaki, A. Kosugi, and S. Karita. 2019. Glucose production from cellulose through biological simultaneous enzyme production and saccharification using recombinant bacteria expressing the β-glucosidase gene. J. Biosci. Bioeng., 127: 340-344. [PubMed ID: 30237013]

トップ アイコン研究業績のページにもどる