凍結層を持つ土への浸潤に浸潤水の溶質濃度が及ぼす影響

Infiltration of KNO₃ solution into frozen soils

紀藤哲矢・〇渡辺晋生・取出伸夫 Tetsuya KITO, Kunio WATANABE, Nobuo TORIDE

はじめに 寒冷地では、冬期に地表から凍土層が発達し、春先に融雪水が凍土層へ浸潤す る.こうした融雪水の浸潤過程は、融雪水が地表で再凍結することで浸潤が停滞する期間、 凍土により浸潤速度が抑制される期間、未凍土とほぼ同様の速度で凍土層下を浸潤が進行 する期間に分けられる.また、凍結期の土中水分量が多いほど浸潤停滞期間と抑制期間が 長くなり、抑制期間の浸潤速度が遅くなることが既往の研究によって示されている.一方, 融雪水には秋播の堆肥や硫化アンモニウムなどの化学肥料が溶解することも多く、こうし た溶質の浸潤過程への影響は未だよく分かっていない.そこで本研究では、凍土の融解・ 浸潤速度と浸潤水の溶質濃度の関係を明らかにすることを目的にカラム実験を行った.

試料と方法 試料には北海道芽室の畑土を用いた. 試料を内径 7.8 cm, 高さ 35 cm のアク リル鉛直カラムに, 採土時の乾燥密度(0.95 g cm⁻³), 任意の体積含水率(0.46 m³ m⁻³) で充填した. カラムには側面より熱電対を 1 cm 間隔で, TDR とテンシオメータを 5 cm 間 隔で挿入した. カラム側面を断熱し, 3℃の低温室に 48 h 静置した後, 試料上下端の温度 を-6℃と 2℃に制御することで, 試料を上端から下方に凍結した. 試料の凍結中, カラム への給排水はなしとした. 凍結 48 h 後, 上下端の温度制御を停止し, 下端を 3℃の大気に 開放するとともに, 上端より KNO₃溶液(0,0.05 M)を 15 cm の堪水条件で給水した. 実 験中, 温度, 土中水圧, 液状水量(凍土内については不凍水量),積算浸潤量を 5 分間隔で 測定した. なお, 不凍水量は異なる全水量毎に求めた検量式を用いて TDR の読み値から決 定した. また,浸潤前線の形状を概ね矩形と見なし,前線の位置を TDR の読み値が急激に 変化した地点とした. 実験は 2 連で行い, 凍結終了時に片方のカラムを 2.5 cm 間隔で切断 し, 炉乾により全水量分布を求めた. 融解過程の凍土の全水量については,浸潤前線到達 前は凍結終了時の全水量と,浸潤前線通過後は試料が完全に融解した後の全水量とそれぞ れ等しいと仮定した. そして,全水量と不凍水量との差から凍土内の氷量を算出した.

結果と考察 Fig. 1(a)に、凍結終了時の温度と水分分布を示す.水分分布の破線は不凍水 量であり、実線の全水量との差は氷量を示す.試料を上端から凍結すると、未凍土からの 水分移動により凍土の全水量が増加した.また、凍結面は48hで約12.5 cm深まで進行し た.ここで、試料の凍結を止め、KNO3溶液を上端より浸潤させた.Fig.2 に積算浸潤量を 示す.KNO3溶液の濃度によらず、浸潤停滞、抑制、未凍土と同様の浸潤速度の三つの期 間が確認出来た.また、KNO3溶液の濃度が高くなると、浸潤停滞時間が短くなり、浸潤 抑制期間の浸潤速度が速くなった.Fig.3 に、この際の浸潤前線と融解前線の位置の時間 変化を示す.図中のプロットは浸潤前線(色塗が0M,白塗が0.05 M)、破線と実線は温度 が0℃に到達した時間と再び0℃から上昇し始める時間(灰色が0M,黒色が0.05 M)を示 す.破線と実線の間は0℃で温度が停滞する期間であり、氷の融解が活発に起きていると 考えられる.浸潤前線は0℃以下の凍土内から0℃の温度停滞領域を経て、凍土下まで進行

三重大学大学院生物資源学研究科 Graduate School of Bioresources, Mie University キーワード: 凍土, 浸潤, 窒素循環

した. 凍土中の不凍水を水 みちとして水が浸潤してい ること,氷による透水係数 の低下が浸潤速度を抑制し ていることが推測できる. 浸潤水の溶質濃度が高いと, 7.5 cm 深までは浸潤前線が 早く到達した. Fig. 1(b)に この時(融解開始後24h) の温度と水分分布を示す. 溶質による融点降下により 氷量が減り,透水に寄与す る不凍水量が増加している といえる. 浸潤前線が凍結 層下に達すると浸潤前線の 進行に違いが見られなくな った (Fig. 3). Fig. 1(c)に, この時の(融解開始後 42 h) の温度と水分分布を示す. 氷の融解にともない土中水 の溶質濃度が小さくなり KNO₃による融点降下が小 さくなったと考えられる. おわりに 畑土のカラム 凍結・融解実験を行い, KNO₃溶液の浸潤過程を観 察した. その結果, 浸潤水 の溶質濃度が高くなると, 融点降下により抑制期間の 浸潤速度が速くなった.し かし,浸潤が進行するにつ れ土中水の溶質濃度が低く なるため,こうした違いは 見られなくなった.今後は, 同様の実験をさまざまな溶 質濃度で行うとともに土中 の溶質濃度を測定すること で,浸潤速度の溶質濃度依 存性や融解期の溶質移動を 検証する予定である.

Cumulative infiltration into a frozen soil.

Fig. 3 浸潤前線と融解前線 Infiltration and thawing fronts.