分子動力学法による粘土層間水の挙動に関する基礎研究

ーアルゴン流体と壁面の相互作用ー

三重大学生物資源学部 溝口 勝• ○渡辺晋生

1.はじめに

粘土表面の吸着水や層間水の挙動を知るこ とは土壌のイオン交換、圧密、膨潤および凍 上現象を解明するのに重要である。こうした 粘土周りの水の性質はこれまでコロイド科学 的な手法によって研究されてきた。特に、Is raelachiviliは液体中の雲母表面間力を実測 し、30Å以下の距離はDLVO理論の適用範囲外 であることを示した。¹⁾ 一方、近年のコン ピュータの発達は計算機上に仮想の粘土空間 を作り出すことを可能としつつある。本研究 は分子動力学法²⁾により粘土層間水のミクロ な挙動を解明することを目標にしている。今 回はこの目標を達成するための手始めとして、 理想的な固定層に挟まれたアルゴン流体の挙 動を計算し、壁面が流体の運動に及ぼす影響 について検討した。

2. 方法

(1)分子動力学法(MD法)

分子動力学法とは計算機の中に配置した分 子の位置と速度を古典力学に基づいて計算し、 その挙動から系の性質を調べる方法である。

(2)計算に用いた試料(アルゴン, Ar)

ー般に粘土層間の水分子はそれ自身双極子 であるのに加えて、粘土表面と電気的な相互 作用をもつために、計算が極めて複雑になる。 流体に対する壁面と温度の影響を見るために、 本実験ではこうした複雑な水分子の代わりに アルゴン原子を選び、原子間の相互作用とし てしJポテンシャルのみを仮定した。

(3)系の設定

メモリーと計算時間の制約上、アボガドロ 数程度の分子集団を計算機上に配置し計算す るのは不可能である。そこで、MD法では通 常、Fig.1のような周期的境界条件を設定する。 流体の初期配置として3種類の単位セル(a,b, c)を設定した。(c)は粘土層間水を想定した架 空の層間流体系である。計算に用いた流体の 密度と温度に関する初期状態をTable 1に示す。 ここで、状態Ⅰ, Ⅱ, Ⅲはそれぞれ液体, 液 体に近い気体、気体である。なお、1つの計 算に要する時間は486/33MHzのパソコンで平均 6時間程度である。

3.結果と考察

(1)壁面近傍の密度分布(Fig.2)

状態 I では密度分布が振動し、流体の存在 いやすさが壁面からの距離に応じて周期的に 変化した。すなわち、壁面ごく近くでは密度 が極端に小さい領域が現れ、中央付近では振 幅が小さかった。これは流体原子が、固定さ れた壁面個々の原子の影響を受けていること を示す。

Fig.1 単位セルとアルゴン原子の初期配置 a) 固定原子のない系

- b) セル中央に固定原子を持つ系
- c) セルの上下端に固定壁を持つ系

Table 1						
状態	密度	温度 刻み時間			圧力(M Pa)	
	g/cm 3	(K)	(ps)	a	b	С
Ι	125	100	3.0	-0.11	129	1.72
II	125	200	0.5	49.5	58.9	67.3
III	0.01	200	0.5	0.42	0.41	0.36

(2)流体の構造性(Fig.3)

Fig.3は初期配置(a),状態Iの2体相関関数 (PCF)の一例である。PCFは流体が構造性をも たない場合、通常1に収束する。この図は、 壁面がないにも拘らず流体がかなりの構造性 をもっていることを示す。Fig.2のように壁面 がある場合には密度が距離に応じて変動する ことから、その構造性も壁面からの距離によ って変化することが予想される。しかしなが ら、詳細については粒子数を増やしたMD計 算および層ごとのPCFの計算が必要である。

(3)流体の拡散挙動(Fig.4)

拡散挙動を平均2乗変位(MSD)から求めた。 MSD(t)は原子が気体的に等速直線運動をする とき2次関数となり、液体的にランダムウオ ークをするとき1次関数となる。Table 2にM SDの傾きから求めた拡散係数を示す。(a)の計 算結果は実際の系を良く再現している。また (a)と比較して(c)の方が拡散がおこりにく いことがわかる。これは壁面により系全体の 運動が束縛されるためと考えられる。

(4)壁面間距離と温度の影響

壁面間距離が狭まる程あるいは温度が低下 する程、流体のポテンシャルエネルギは低下 した。(Fig.5) また、圧力は120K以上では壁 面間距離に応じて増大するが、逆に100Kでは 減少した。(Fig.6) これは壁面の影響による 凝固点降下に関係している思われるが、詳細 については現在のところ解らない。

4.おわりに

分子動力学法を用いた計算により、アルゴ (x) ン流体と壁面の相互作用に関して次の結論を 出 得た。(1)壁面の影響により流体の密度が不均 -640 ーになり、その構造性や動的挙動が変化する。 (2)壁面間距離や温度によって流体のポテンシ ャルエネルギおよび圧力が変化する。 -680

分子動力学法を粘土-水系に拡張し、既往 の実験事実を確認することが今後の課題であ る。また、今回の計算はパソコンで行ったた めメモリーと計算時間が大きな制約となった が、粒子数を増やした系で再現性を確認する ことも必要である。

堂(1990)