Modeling coupled water and heat transport in a freezing soil using the modified HYDRUS-1D code.

Kunio Watanabe ${ }^{1}$,Tetsuya Kito ${ }^{1}$, Nobuo Toride ${ }^{1}$ and Martinus T. van Genuchten ${ }^{2}$
${ }^{1}$ Graduate school of Bioresources, Mie Univ., Japan
${ }^{2}$ Department of Mechanical Engineering, COPPE/LTTC, Federal University of Rio de Janeiro, BrazilLiquid water \& ice coexist in a frozen soil (Unfrozen water, θ_{u})Soil freezing model

$$
\begin{aligned}
& \text { Water } \\
& \frac{\partial \theta_{w w}(h)}{\partial t}+\frac{\rho_{1}}{\rho_{w w}} \frac{\partial \theta_{i}(T)}{\partial t}=\frac{\partial}{\partial z}\left[K_{\text {Lh }}(h) \frac{\partial h}{\partial z}+K_{L h}(h)+K_{L r}(h) \frac{\partial T}{\partial z}+K_{w h}(\theta) \frac{\partial h}{\partial z}+K_{v r}(\theta) \frac{\partial T}{\partial z}\right] \\
& \text { Heat }
\end{aligned}
$$

$$
\frac{\partial C_{\partial} T}{\partial t}-L_{f} \rho_{i} \frac{\partial \theta_{1}}{\partial t}+L_{0}(T) \frac{\partial \theta_{v}(T)}{\partial t}=\frac{\partial}{\partial z}\left[\lambda(\theta) \frac{\partial T}{\partial z}\right]-C_{m m} \frac{\partial \alpha_{m} T}{\partial z}-C_{v} \frac{\partial q_{T} T}{\partial z}-L_{0}(T) \frac{\partial q_{v}}{\partial z}
$$

Pressure of θ_{u} in frozen soil is related to temperature with the Clausius-Clapeyron equation (C-C eq.).
Two possible scenarios for the reduce of J_{w} Scenario 1: Reduce hydraulic conductivity of the frozen soi

The reduction function, RF for K.

Scenario 2:Modify h-T relationship (Clausius-Clapeyron eq.)Calculating soil freezing using $K_{f}=K\left(\theta_{u}\right)$

Laboratory experiment

$h, T, \theta_{,}, \theta_{1}$-profiles were measured for 3 freezing soils with various θ

- $\theta_{\text {in }}$ in frozen regions of silt loam and sandHYDRUS calculation

(1) Ω could change the $\theta_{\text {total }}$, but could not describe the ice growth in frozen regions.
- Ω could change the $\theta_{\text {total }}$, but could not describe the ice growth in fro
® θ_{u} was slightly underestimated compared to laboratory experiments.
A sharp peak was observed at the freezing front at long-time, due to the underestimation of K_{f}.

Formula type of RF is not sensitive to J_{w} in frozen regions (Scenario 1)

- Modified C-C eq improved the ice growth in frozen regions (Sceno).
θ was overestimated and the soil froze only shallow depth (Scenario 2)

