Modeling coupled water and heat transport in a freezing soil using the modified HYDRUS-1D code.

Kunio Watanabe¹, Tetsuya Kito¹, Nobuo Toride¹ and Martinus T. van Genuchten²

¹Graduate school of Bioresources, Mie Univ., Japan

²Department of Mechanical Engineering, COPPE/LTTC, Federal University of Rio de Janeiro, Brazil

Liquid water & ice coexist in a frozen soil (Unfrozen water, $\theta_{..}$)

Two possible scenarios for the reduce of J... Scenario 1: Reduce hydraulic conductivity of the frozen soil

The reduction function. RF for K.

$$K_f = \mathbf{RF} \times K = 10^{-Q\Omega} \times K$$

20

0.6

